Synthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite
Authors
Abstract:
Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the ternary nanocomposite was carried out in two steps: synthesis of gelatin-hydroxyapatite binary nanocomposite and addition of poly lactic acid with different percentages to the resulting composition. The crystal structure was determined by X-ray diffraction (XRD), while major elements and impurities of hydroxyapatite were identified by elemental analysis of X-ray fluorescence (XRF). Functional groups were determined by Fourier transform infrared spectroscopy (FTIR). Morphology and size of the nanocomposites were evaluated using field emission scanning electron microscope (FE-SEM).Biocompatibility of nanocomposites was investigated by MTT assay. Results: XRD patterns verified the ideal crystal structure of the hydroxyapatite, which indicated an appropriate synthesis process and absence of disturbing phases. Results of FTIR analysis determined the polymers’ functional groups, specified formation of the polymers on the hydroxyapatite surface, and verified synthesis of nHA/PLA/Gel composite. FESEM images also indicated the homogeneous structure of the composite in the range of 50 nanometers. MTT assay results confirmed the biocompatibility of nanocomposite samples.Conclusion: This study suggested that the ternary nanocomposite of nHA/PLA/Gel can be a good candidate for biomedical application such as drug delivery systems, but for evaluation of its potential in hard tissue replacement, mechanical tests should be performed.
similar resources
synthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polylactic acid ternary nanocomposite
objective(s): the current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of ha, pla, and gelatin for biomedical application.materials and methods: hydroxyapatite nanopowder (ha: ca10(po4)6(oh)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oc followed by heating in an oven at 800. synthesis of the te...
full textEvaluation of Ibuprofen Release from Gelatin /Hydroxyapatite /Polylactic Acid Nanocomposites
Gelatin-hydroxyapatite-polylactic acid (PLA) nanocomposites were synthesized using five different formulations. The nanocomposites were loaded with ibuprofen and the amount of drug in the carriers was determined. X-ray diffraction (XRD) analysis was conducted before and after drug loading to ensure the presence of ibuprofen on the nanocomposites. Drug delivery was evaluated in phosphate buffere...
full textChemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications
A novel bioanalogue hydroxyapatite (HAp)/chitosan phosphate (CSP) nanocomposite has been synthesized by a solution-based chemical methodology with varying HAp contents from 10 to 60% (w/w). The interfacial bonding interaction between HAp and CSP has been investigated through Fourier transform infrared absorption spectra (FTIR) and x-ray diffraction (XRD). The surface morphology of the composite...
full textProcessing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films
The focus of this study is to examine the effect of cellulose nanocrystals (CNC) on the properties of polylactic acid (PLA) films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC co...
full textGelatin/hydroxyapatite nanocomposite scaffolds for bone repair
The use of bioscaffolds for tissue repair is widely accepted. They can provide structural stability and a 3D system on which cells can grow new tissue. Natural bone is composed of organic (mainly collagen) and mineral biomaterials (predominantly carbonate hydroxyapatite, HA). In recent years, developments in 3D porous-scaffold manufacturing have increased hopes of successful fabrication of stru...
full textsynthesis and characterization of some macrocyclic schiff bases
ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...
15 صفحه اولMy Resources
Journal title
volume 3 issue 2
pages 127- 134
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023